Avaliação do Usuário

Estrela inativaEstrela inativaEstrela inativaEstrela inativaEstrela inativa
 

Leitores de RFID são equipamentos cada vez mais baratos, ainda mais quando tratamos de módulos para automação. Também são cada vez mais acessíveis e com funcionalidades mais completas.

 

Existem vários modelos que operam em diversas faixas de frequência, que é o que diferencia os módulos, um módulo que opere em 125KHz não lerá, por exemplo, tags de 13,56MHz.

 

O tutorial Como usar um coletor de RFID com o Arduino mostra usar um leitor de 125KHz, neste tutorial o leitor é de 13,56MHz, sendo assim é preciso atenção na compra de tags compatíveis com o leitor.

 

Vamos ao que interessa:

 

O leitor usado aqui é um Mifare RC522 da Tato Equipamentos Eletrônicos:

 

Imagem01

 

O leitor vem acompanhado de um tag do tipo chaveiro:

 

Imagem02

 

E um tag do tipo cartão:

 

Imagem03

 

Para liga-lo ao Arduino basta seguir o seguinte esquema para a pinagem:

 

Arduino

RFID RC522

10

SDA

13

SCK

11

MOSI

12

MISO

-

IRQ

GND

GND

5

RST

3,3V

3,3V

 

Imagem04

 

O código, no final das contas, não é tão complexo, e o fabricante disponibiliza-o, porém em chinês! Mas depois de muito garimpar encontrei ele traduzido para o inglês, que pode ser baixado aqui.

 

Esse sketch pode ser facilmente adaptado para qualquer aplicação ou necessidade, funções podem ser suprimidas ou acrescentadas:

 

{code}

/*

* File name:  RFID.ino

* Creatory:   Dr.Leong   ( WWW.B2CQSHOP.COM )

* Creation date: 2011.09.19

* Modified by: Eng. Robson (Este endereço de email está sendo protegido de spambots. Você precisa do JavaScript ativado para vê-lo.)

* Modified date: 2013.09.10

* Modified:   Translation from Chinese to English (by google)

* Functional Description: Mifare1 Anti-collision find cards → → → Select card reader interface

*/

// the sensor communicates using SPI, so include the library:

#include <SPI.h>

 

#define           uchar   unsigned char

#define           uint      unsigned int

 

//Maximum length of the array

#define MAX_LEN 16

 

/////////////////////////////////////////////////////////////////////

//set the pin

/////////////////////////////////////////////////////////////////////

const int chipSelectPin = 10;

const int NRSTPD = 5;

 

//MF522 Command word

#define PCD_IDLE              0x00               //NO action; Cancel the current command

#define PCD_AUTHENT           0x0E               //Authentication Key

#define PCD_RECEIVE           0x08               //Receive Data

#define PCD_TRANSMIT          0x04               //Transmit data

#define PCD_TRANSCEIVE        0x0C               //Transmit and receive data,

#define PCD_RESETPHASE        0x0F               //Reset

#define PCD_CALCCRC           0x03               //CRC Calculate

 

// Mifare_One card command word

# define PICC_REQIDL          0x26               // find the antenna area does not enter hibernation

# define PICC_REQALL          0x52               // find all the cards antenna area

# define PICC_ANTICOLL        0x93               // anti-collision

# define PICC_SElECTTAG       0x93               // election card

# define PICC_AUTHENT1A       0x60               // authentication key A

# define PICC_AUTHENT1B       0x61               // authentication key B

# define PICC_READ            0x30               // Read Block

# define PICC_WRITE           0xA0               // write block

# define PICC_DECREMENT       0xC0               // debit

# define PICC_INCREMENT       0xC1               // recharge

# define PICC_RESTORE         0xC2               // transfer block data to the buffer

# define PICC_TRANSFER        0xB0               // save the data in the buffer

# define PICC_HALT            0x50               // Sleep

 

 

//And MF522 The error code is returned when communication

#define MI_OK                 0

#define MI_NOTAGERR           1

#define MI_ERR                2

 

 

//------------------MFRC522 Register---------------

//Page 0:Command and Status

#define     Reserved00            0x00

#define     CommandReg            0x01

#define     CommIEnReg            0x02

#define     DivlEnReg             0x03

#define     CommIrqReg            0x04

#define     DivIrqReg             0x05

#define     ErrorReg              0x06

#define     Status1Reg            0x07

#define     Status2Reg            0x08

#define     FIFODataReg           0x09

#define     FIFOLevelReg          0x0A

#define     WaterLevelReg         0x0B

#define     ControlReg            0x0C

#define     BitFramingReg         0x0D

#define     CollReg               0x0E

#define     Reserved01            0x0F

//Page 1:Command

#define     Reserved10            0x10

#define     ModeReg               0x11

#define     TxModeReg             0x12

#define     RxModeReg             0x13

#define     TxControlReg          0x14

#define     TxAutoReg             0x15

#define     TxSelReg              0x16

#define     RxSelReg              0x17

#define     RxThresholdReg        0x18

#define     DemodReg              0x19

#define     Reserved11            0x1A

#define     Reserved12            0x1B

#define     MifareReg             0x1C

#define     Reserved13            0x1D

#define     Reserved14            0x1E

#define     SerialSpeedReg        0x1F

//Page 2:CFG

#define     Reserved20            0x20

#define     CRCResultRegM         0x21

#define     CRCResultRegL         0x22

#define     Reserved21            0x23

#define     ModWidthReg           0x24

#define     Reserved22            0x25

#define     RFCfgReg              0x26

#define     GsNReg                0x27

#define     CWGsPReg                      0x28

#define     ModGsPReg             0x29

#define     TModeReg              0x2A

#define     TPrescalerReg         0x2B

#define     TReloadRegH           0x2C

#define     TReloadRegL           0x2D

#define     TCounterValueRegH     0x2E

#define     TCounterValueRegL     0x2F

//Page 3:TestRegister

#define     Reserved30            0x30

#define     TestSel1Reg           0x31

#define     TestSel2Reg           0x32

#define     TestPinEnReg          0x33

#define     TestPinValueReg       0x34

#define     TestBusReg            0x35

#define     AutoTestReg           0x36

#define     VersionReg            0x37

#define     AnalogTestReg         0x38

#define     TestDAC1Reg           0x39

#define     TestDAC2Reg           0x3A

#define     TestADCReg            0x3B

#define     Reserved31            0x3C

#define     Reserved32            0x3D

#define     Reserved33            0x3E

#define     Reserved34                         0x3F

//-----------------------------------------------

 

//4 bytes card serial number, the first 5 bytes for the checksum byte

uchar serNum[5];

 

uchar  writeData[16]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100};  //Initialization 100 dollars

uchar  moneyConsume = 18 ;  //Consumption of 18 yuan

uchar  moneyAdd = 10 ;  //Recharge 10 yuan

//Sector A password, 16 sectors, each sector password 6Byte

uchar sectorKeyA[16][16] = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},

{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},

//{0x19, 0x84, 0x07, 0x15, 0x76, 0x14},

{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},

};

uchar sectorNewKeyA[16][16] = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},

{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xff,0x07,0x80,0x69, 0x19,0x84,0x07,0x15,0x76,0x14},

//you can set another ket , such as  " 0x19, 0x84, 0x07, 0x15, 0x76, 0x14 "

//{0x19, 0x84, 0x07, 0x15, 0x76, 0x14, 0xff,0x07,0x80,0x69, 0x19,0x84,0x07,0x15,0x76,0x14},

// but when loop, please set the  sectorKeyA, the same key, so that RFID module can read the card

{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xff,0x07,0x80,0x69, 0x19,0x33,0x07,0x15,0x34,0x14},

};

 

void setup() {

Serial.begin(9600);                       // RFID reader SOUT pin connected to Serial RX pin at 2400bps

// start the SPI library:

SPI.begin();

 

pinMode(chipSelectPin,OUTPUT);             // Set digital pin 10 as OUTPUT to connect it to the RFID /ENABLE pin

digitalWrite(chipSelectPin, LOW);          // Activate the RFID reader

pinMode(NRSTPD,OUTPUT);               // Set digital pin 10 , Not Reset and Power-down

digitalWrite(NRSTPD, HIGH);

 

MFRC522_Init();

Serial.println("OK");

}

 

void loop()

{

uchar i,tmp, checksum1;

uchar status;

uchar str[MAX_LEN];

uchar RC_size;

uchar blockAddr;            //Selection operation block address 0 to 63

String mynum = "";

 

 

//Find cards, return card type

status = MFRC522_Request(PICC_REQIDL, str);

if (status == MI_OK)

{

//Serial.println("Card detected");

//Serial.print(str[0],BIN);

//Serial.print(" , ");

//Serial.print(str[1],BIN);

//Serial.println(" ");

}

 

//Anti-collision, return card serial number 4 bytes

status = MFRC522_Anticoll(str);

memcpy(serNum, str, 5);

if (status == MI_OK)

{

checksum1 = serNum[0] ^ serNum[1] ^ serNum[2] ^ serNum[3];

//Serial.println("The card's number is  : ");

Serial.print(2);

Serial.print(serNum[0]);

//Serial.print(" , ");

Serial.print(serNum[1],BIN);

//Serial.print(" , ");

Serial.print(serNum[2],BIN);

//Serial.print(" , ");

Serial.print(serNum[3],BIN);

//Serial.print(" , ");

Serial.print(serNum[4],BIN);

Serial.print(checksum1);

Serial.println(3);

//Serial.println(" ");

 

// Should really check all pairs, but for now we'll just use the first

 

// if(serNum[0] == 88) {

//  Serial.println("Hello Grant");

// } else if(serNum[0] == 173) {

//   Serial.println("Hello David");

// }

delay(1000);

}

//Serial.println(" ");

MFRC522_Halt();                               //Command card into hibernation

 

}

 

/*

* Function Name:Write_MFRC5200

* Function Description: To a certain MFRC522 register to write a byte of data

* Input Parameters:addr - register address; val - the value to be written

* Return value: None

*/

void Write_MFRC522(uchar addr, uchar val)

{

digitalWrite(chipSelectPin, LOW);

 

//Address Format:0XXXXXX0

SPI.transfer((addr<<1)&0x7E);

SPI.transfer(val);

 

digitalWrite(chipSelectPin, HIGH);

}

 

 

/*

* Function Name:Read_MFRC522

* Description: From a certain MFRC522 read a byte of data register

* Input Parameters: addr - register address

* Returns: a byte of data read from the

*/

uchar Read_MFRC522(uchar addr)

{

uchar val;

 

digitalWrite(chipSelectPin, LOW);

 

//Address Format:1XXXXXX0

SPI.transfer(((addr<<1)&0x7E) | 0x80);

val =SPI.transfer(0x00);

 

digitalWrite(chipSelectPin, HIGH);

 

return val;

}

 

/*

* Function Name:SetBitMask

* Description: Set RC522 register bit

* Input parameters: reg - register address; mask - set value

* Return value: None

*/

void SetBitMask(uchar reg, uchar mask)

{

uchar tmp;

tmp = Read_MFRC522(reg);

Write_MFRC522(reg, tmp | mask);  // set bit mask

}

 

 

/*

* Function Name: ClearBitMask

* Description: clear RC522 register bit

* Input parameters: reg - register address; mask - clear bit value

* Return value: None

*/

void ClearBitMask(uchar reg, uchar mask)

{

uchar tmp;

tmp = Read_MFRC522(reg);

Write_MFRC522(reg, tmp & (~mask));  // clear bit mask

}

 

 

/*

* Function Name:AntennaOn

* Description: Open antennas, each time you start or shut down the natural barrier between the transmitter should be at least 1ms interval

* Input: None

* Return value: None

*/

void AntennaOn(void)

{

uchar temp;

 

temp = Read_MFRC522(TxControlReg);

if (!(temp & 0x03))

{

SetBitMask(TxControlReg, 0x03);

}

}

 

 

/*

* Function Name: AntennaOff

* Description: Close antennas, each time you start or shut down the natural barrier between the transmitter should be at least 1ms interval

* Input: None

* Return value: None

*/

void AntennaOff(void)

{

ClearBitMask(TxControlReg, 0x03);

}

 

 

/*

* Function Name: ResetMFRC522

* Description: Reset RC522

* Input: None

* Return value: None

*/

void MFRC522_Reset(void)

{

Write_MFRC522(CommandReg, PCD_RESETPHASE);

}

 

 

/*

* Function Name:InitMFRC522

* Description: Initialize RC522

* Input: None

* Return value: None

*/

void MFRC522_Init(void)

{

digitalWrite(NRSTPD,HIGH);

 

MFRC522_Reset();

 

//Timer: TPrescaler*TreloadVal/6.78MHz = 24ms

Write_MFRC522(TModeReg, 0x8D);                    //Tauto=1; f(Timer) = 6.78MHz/TPreScaler

Write_MFRC522(TPrescalerReg, 0x3E);   //TModeReg[3..0] + TPrescalerReg

Write_MFRC522(TReloadRegL, 30);

Write_MFRC522(TReloadRegH, 0);

 

Write_MFRC522(TxAutoReg, 0x40);             //100%ASK

Write_MFRC522(ModeReg, 0x3D);              //CRC Initial value 0x6363     ???

 

//ClearBitMask(Status2Reg, 0x08);              //MFCrypto1On=0

//Write_MFRC522(RxSelReg, 0x86);            //RxWait = RxSelReg[5..0]

//Write_MFRC522(RFCfgReg, 0x7F);                        //RxGain = 48dB

 

AntennaOn();              //Open the antenna

}

 

 

/*

* Function Name:MFRC522_Request

* Description: Find cards, read the card type number

* Input parameters: reqMode - find cards way

*                                TagType - Return Card Type

*                                           0x4400 = Mifare_UltraLight

*                                            0x0400 = Mifare_One(S50)

*                                            0x0200 = Mifare_One(S70)

*                                            0x0800 = Mifare_Pro(X)

*                                            0x4403 = Mifare_DESFire

* Return value: the successful return MI_OK

*/

uchar MFRC522_Request(uchar reqMode, uchar *TagType)

{

uchar status;

uint backBits;                         //The received data bits

 

Write_MFRC522(BitFramingReg, 0x07);                  //TxLastBists = BitFramingReg[2..0] ???

 

TagType[0] = reqMode;

status = MFRC522_ToCard(PCD_TRANSCEIVE, TagType, 1, TagType, &backBits);

 

if ((status != MI_OK) || (backBits != 0x10))

{

status = MI_ERR;

}

 

return status;

}

 

 

/*

* Function Name: MFRC522_ToCard

* Description: RC522 and ISO14443 card communication

* Input Parameters: command - MF522 command word,

*                                sendData--RC522 sent to the card by the data

*                                sendLen--Length of data sent

*                                backData--Received the card returns data,

*                                backLen--Return data bit length

* Return value: the successful return MI_OK

*/

uchar MFRC522_ToCard(uchar command, uchar *sendData, uchar sendLen, uchar *backData, uint *backLen)

{

uchar status = MI_ERR;

uchar irqEn = 0x00;

uchar waitIRq = 0x00;

uchar lastBits;

uchar n;

uint i;

 

switch (command)

{

case PCD_AUTHENT:                 //Certification cards close

{

irqEn = 0x12;

waitIRq = 0x10;

break;

}

case PCD_TRANSCEIVE:         //Transmit FIFO data

{

irqEn = 0x77;

waitIRq = 0x30;

break;

}

default:

break;

}

 

Write_MFRC522(CommIEnReg, irqEn|0x80);      //Interrupt request

ClearBitMask(CommIrqReg, 0x80);                                 //Clear all interrupt request bit

SetBitMask(FIFOLevelReg, 0x80);                         //FlushBuffer=1, FIFO Initialization

 

Write_MFRC522(CommandReg, PCD_IDLE);           //NO action; Cancel the current command???

 

//Writing data to the FIFO

for (i=0; i<sendLen; i++)

{

Write_MFRC522(FIFODataReg, sendData[i]);

}

 

//Execute the command

Write_MFRC522(CommandReg, command);

if (command == PCD_TRANSCEIVE)

{

SetBitMask(BitFramingReg, 0x80);               //StartSend=1,transmission of data starts

}

 

//Waiting to receive data to complete

i = 2000;          //i according to the clock frequency adjustment, the operator M1 card maximum waiting time 25ms???

do

{

//CommIrqReg[7..0]

//Set1 TxIRq RxIRq IdleIRq HiAlerIRq LoAlertIRq ErrIRq TimerIRq

n = Read_MFRC522(CommIrqReg);

i--;

}

while ((i!=0) && !(n&0x01) && !(n&waitIRq));

 

ClearBitMask(BitFramingReg, 0x80);                               //StartSend=0

 

if (i != 0)

{

if(!(Read_MFRC522(ErrorReg) & 0x1B))          //BufferOvfl Collerr CRCErr ProtecolErr

{

status = MI_OK;

if (n & irqEn & 0x01)

{

status = MI_NOTAGERR;                               //??

}

 

if (command == PCD_TRANSCEIVE)

{

n = Read_MFRC522(FIFOLevelReg);

lastBits = Read_MFRC522(ControlReg) & 0x07;

if (lastBits)

{

*backLen = (n-1)*8 + lastBits;

}

else

{

*backLen = n*8;

}

 

if (n == 0)

{

n = 1;

}

if (n > MAX_LEN)

{

n = MAX_LEN;

}

 

//Reading the received data in FIFO

for (i=0; i<n; i++)

{

backData[i] = Read_MFRC522(FIFODataReg);

}

}

}

else

{

status = MI_ERR;

}

 

}

 

//SetBitMask(ControlReg,0x80);           //timer stops

//Write_MFRC522(CommandReg, PCD_IDLE);

 

return status;

}

 

 

/*

* Function Name: MFRC522_Anticoll

* Description: Anti-collision detection, reading selected card serial number card

* Input parameters: serNum - returns 4 bytes card serial number, the first 5 bytes for the checksum byte

* Return value: the successful return MI_OK

*/

uchar MFRC522_Anticoll(uchar *serNum)

{

uchar status;

uchar i;

uchar serNumCheck=0;

uint unLen;

 

 

//ClearBitMask(Status2Reg, 0x08);                      //TempSensclear

//ClearBitMask(CollReg,0x80);                             //ValuesAfterColl

Write_MFRC522(BitFramingReg, 0x00);                  //TxLastBists = BitFramingReg[2..0]

 

serNum[0] = PICC_ANTICOLL;

serNum[1] = 0x20;

status = MFRC522_ToCard(PCD_TRANSCEIVE, serNum, 2, serNum, &unLen);

 

if (status == MI_OK)

{

//Check card serial number

for (i=0; i<4; i++)

{

serNumCheck ^= serNum[i];

}

if (serNumCheck != serNum[i])

{

status = MI_ERR;

}

}

 

//SetBitMask(CollReg, 0x80);                    //ValuesAfterColl=1

 

return status;

}

 

 

/*

* Function Name: CalulateCRC

* Description: CRC calculation with MF522

* Input parameters: pIndata - To read the CRC data, len - the data length, pOutData - CRC calculation results

* Return value: None

*/

void CalulateCRC(uchar *pIndata, uchar len, uchar *pOutData)

{

uchar i, n;

 

ClearBitMask(DivIrqReg, 0x04);                           //CRCIrq = 0

SetBitMask(FIFOLevelReg, 0x80);                         //Clear the FIFO pointer

//Write_MFRC522(CommandReg, PCD_IDLE);

 

//Writing data to the FIFO

for (i=0; i<len; i++)

{

Write_MFRC522(FIFODataReg, *(pIndata+i));

}

Write_MFRC522(CommandReg, PCD_CALCCRC);

 

//Wait CRC calculation is complete

i = 0xFF;

do

{

n = Read_MFRC522(DivIrqReg);

i--;

}

while ((i!=0) && !(n&0x04));                                 //CRCIrq = 1

 

//Read CRC calculation result

pOutData[0] = Read_MFRC522(CRCResultRegL);

pOutData[1] = Read_MFRC522(CRCResultRegM);

}

 

 

/*

* Function Name: MFRC522_SelectTag

* Description: election card, read the card memory capacity

* Input parameters: serNum - Incoming card serial number

* Return value: the successful return of card capacity

*/

uchar MFRC522_SelectTag(uchar *serNum)

{

uchar i;

uchar status;

uchar size;

uint recvBits;

uchar buffer[9];

 

//ClearBitMask(Status2Reg, 0x08);                          //MFCrypto1On=0

 

buffer[0] = PICC_SElECTTAG;

buffer[1] = 0x70;

for (i=0; i<5; i++)

{

buffer[i+2] = *(serNum+i);

}

CalulateCRC(buffer, 7, &buffer[7]);              //??

status = MFRC522_ToCard(PCD_TRANSCEIVE, buffer, 9, buffer, &recvBits);

 

if ((status == MI_OK) && (recvBits == 0x18))

{

size = buffer[0];

}

else

{

size = 0;

}

 

return size;

}

 

 

/*

* Function Name: MFRC522_Auth

* Description: Verify card password

* Input parameters: authMode - Password Authentication Mode

0x60 = A key authentication

0x61 = Authentication Key B

BlockAddr--Block address

Sectorkey--Sector password

serNum--Card serial number, 4-byte

* Return value: the successful return MI_OK

*/

uchar MFRC522_Auth(uchar authMode, uchar BlockAddr, uchar *Sectorkey, uchar *serNum)

{

uchar status;

uint recvBits;

uchar i;

uchar buff[12];

 

//Verify the command block address + sector + password + card serial number

buff[0] = authMode;

buff[1] = BlockAddr;

for (i=0; i<6; i++)

{

buff[i+2] = *(Sectorkey+i);

}

for (i=0; i<4; i++)

{

buff[i+8] = *(serNum+i);

}

status = MFRC522_ToCard(PCD_AUTHENT, buff, 12, buff, &recvBits);

 

if ((status != MI_OK) || (!(Read_MFRC522(Status2Reg) & 0x08)))

{

status = MI_ERR;

}

 

return status;

}

 

 

/*

* Function Name: MFRC522_Read

* Description: Read block data

* Input parameters: blockAddr - block address; recvData - read block data

* Return value: the successful return MI_OK

*/

uchar MFRC522_Read(uchar blockAddr, uchar *recvData)

{

uchar status;

uint unLen;

 

recvData[0] = PICC_READ;

recvData[1] = blockAddr;

CalulateCRC(recvData,2, &recvData[2]);

status = MFRC522_ToCard(PCD_TRANSCEIVE, recvData, 4, recvData, &unLen);

 

if ((status != MI_OK) || (unLen != 0x90))

{

status = MI_ERR;

}

 

return status;

}

 

 

/*

* Function Name: MFRC522_Write

* Description: Write block data

* Input parameters: blockAddr - block address; writeData - to 16-byte data block write

* Return value: the successful return MI_OK

*/

uchar MFRC522_Write(uchar blockAddr, uchar *writeData)

{

uchar status;

uint recvBits;

uchar i;

uchar buff[18];

 

buff[0] = PICC_WRITE;

buff[1] = blockAddr;

CalulateCRC(buff, 2, &buff[2]);

status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff, &recvBits);

 

if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A))

{

status = MI_ERR;

}

 

if (status == MI_OK)

{

for (i=0; i<16; i++)                      //Data to the FIFO write 16Byte

{

buff[i] = *(writeData+i);

}

CalulateCRC(buff, 16, &buff[16]);

status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 18, buff, &recvBits);

 

if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A))

{

status = MI_ERR;

}

}

 

return status;

}

 

 

/*

* Function Name: MFRC522_Halt

* Description: Command card into hibernation

* Input: None

* Return value: None

*/

void MFRC522_Halt(void)

{

uchar status;

uint unLen;

uchar buff[4];

 

buff[0] = PICC_HALT;

buff[1] = 0;

CalulateCRC(buff, 2, &buff[2]);

 

status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff,&unLen);

}

{/code}

 

Para testar o funcionamento faça upload do sketch para o Arduino e abra o Serial Monitor do ambiente. Aproximando os tags do sensor você deverá receber serialmente o número correspondente, cada sequencia numérica apresentada é o código da tag, mas atente-se de que a sequencia contém um prefixo hexadecimal 02 e um sufixo hexadecimal 03:

 

Imagem05